
Using graphs to represent Japanese words for
serious games

Tristan Tribes1, Virgil Rouquette-Campredon1, Samuel Helye1, and Madalina
Croitoru2

1 Computer Science Department, Faculty of Science, University of Montpellier
2 Boreal, LIRMM, INRIA, CNRS, University of Montpellier

Abstract. The aim of this paper is to explore the representation prob-
lem of how Japanese words are constructed from Kanjis (i.e. symbols for
concepts). We discuss the various implications of such representations
and demonstrate a fully functional game built upon a Neo4J implemen-
tation.

1 Introduction

The main contribution of this paper is to discuss the graph based knowledge
representation and reasoning aspects behind the implementation of a serious
online Japanese learning game: Lost My Pieces. Graph based knowledge repre-
sentation and reasoning techniques have been historically investigated in the In-
ternational Conference on Conceptual Structures (ICCS) community [10]. Start-
ing with work on Conceptual Graphs [14] [2], Concept Graphs [5], Existential
Graphs [8] or, more recently, Argumentation Graphs [6] the main idea behind
such graph representations is simple. Using a graph based representation of the
problem and by translating the reasoning task, in a sound and complete man-
ner, into a graph operation, one can benefit from combinatorial optimisations
from the graph theoretical world for practical reasoning task [3]. For example,
by having positive existentially closed deduction of logical formulae translated
into labelled graph homomorphism, one can unveil query structures that yield
excellent results in practice [4].

In this paper we place ourselves in the context of graph based knowledge
representation and reasoning and answer the following research questions: “How
to represent kanji combination for facilitating the learning of the Japanese lan-
guage?”. In order to endorse the feasibility of the solution we also demonstrate a
fully functional serious game [1][15][11][13][7] that allows users to learn Japanese
online and discuss various paths for future developments.

2 Motivating example

Imagine a student that is keen to learn Japanese. The Japanese language, no-
toriously difficult, is composed of three writing systems. The most difficult one



is called kanji, where each ideogram represent a concept or an idea, and can be
by itself a whole word. There are about 2000 kanjis to learn in order to be able
to simply carry on a day to day task such as reading a newspaper. To further
the difficulty of the learning, combining kanjis can give birth to new words. For
instance combining the kanji for woman (女) with the kanji for day (日) gives
the word Sun goddess (日女). Similarly, the kanji for one (一) together with the
kanji for person (人) gives the word alone (一人).

Fig. 1: Screenshot of Lost My Pieces

Despite its beauty, it is complicated to keep motivation up when learning
Japanese. To counter this problem we propose a novel way of learning by means
of an interactive platform. The intuition of the interaction is inspired by the
game Little Alchemy3[9] that allows the combination of pictograms in order to
make new images.

In our platform, called Lost My Pieces 4, the user is presented with a set of
basic kanjis. The user can drag and drop the kanjis onto the central pane (called
whiteboard) and combine them to discover new words. In Figure1 a screenshot
of the combination of the two kanjis person and one is depicted. Please notice
three important aspects:

– First, albeit impossible to render on a picture, the stroke order required for
writing the kanji is also depicted when the kanji is selected, facilitating the
learning of writing.

– Second, in an attempt to render the platform pleasant to use we established
a point system allowing the user to unlock kanjis according to their budget.
This is visible in Figure2 that shows all possible kanjis to unlock (and thus to
further combine).

3 https://littlealchemy.com/
4 https://lostmypieces.com/

https://littlealchemy.com/
https://lostmypieces.com/


– Third, when searching for a new kanji to unlock, one can directly see how
many new words they will be able to create with this newly acquired kanji
using their already existing ones. However, such functionality will render the
representation task more difficult as explained in Section 3.

In order to code the platform we have used a common client-server architec-
ture. On the client side we have used the JavaScript library React. On the server
side we have used Node.js®, a Javascript run-time environment and the Fastify
framework. For storing data we have used Neo4j. In the following section we will
detail the implementation solution. Then, in Section 3 we will explain the data
storage problem and our contribution.

Fig. 2: Screenshot of Lost My Pieces Shop

The technologies used for developing the platform as as follows:

– React (front end) : Allows for faster UI development, with reusable components
and seamless page update and interactions.

– Fastify (back end, REST API) : Fast API framework to serve database requests
to the end-user.

– NodeJS (back end) : Javascript run-time to handle all server related tasks.
– NGINX (server) : Handles all traffic towards the server.

We have purposely not described the Neo4j component as knowledge repre-
sentation and reasoning issues are detailed in the next section.

3 Representation problems

The representation problem we address in this paper is the following. We consider
a list of kanjis K. For each kanji k ∈ K I need to store the meaning of the kanji
and, for elements of K \ {k} their combined meaning. For example, we can



consider A and B two kanjis. The word AB respects the order of its components
(i.e. A is first, B is second) and its meaning is different from BA. To represent
this using a database we explored several possibilities.

First we considered using a graph where the nodes could either be kanjis or
words and the edges are labelled using the length of the corresponding word. We
exploit paths as follows:

一 人 一人
l1 r2

While using this method we could exploit paths (i.e. represent words) of
arbitrary length. Unfortunately, the main problem is that manipulating this
structure (for our purpose) was too computationally expensive. For example,
for a word of length 3 we should test 9 combinations of all possible orders (i.e.
paths). For illustration, in the image below we show the representation for a
word of size three.

人 日

本

人日

本人日

日人

r3

r2

l2

l2

l2

l3

r2

A second solution consisted of labelling the edges in the graph as words (with
nodes only representing kanjis). This solution is depicted below.

人 日
人日

The advantage of this representation is that we can represent all orders by
simply checking if an edge label exists.

本 日

本日

日本



However, the words of length 3 or more require a hypergraph support. Fur-
thermore, it requires to have self cycles (for words that contain repeating kanjis).
The hypergraph depiction is shown below.

人

一
日

大
本

中

子

人一日 一日

本中日, 本日中大大

The main problem with the hypergraph representation was the fact that a
word could have several definitions and different variations. For example the
word obtained by combining the kanji large and book has two definitions: root
and foundation. Furthermore it has two different reading possibilities depending
on the context. If this word is represented as an hyperedge we will need further
combinatorial elements to add the information above.

Our solution it to represent the hypergraph as a bipartite graph as follows.

一

日

本

人

一日

日本人

人人

l2

l2

l2

l2

l3

l3

l3

In this final solution (the one that we decided to implement using Neo4j)
the bipartite graph[16][12] contains two classes of nodes. On one hand the kanjis
(represented as round nodes, on the left) and, on the other hand, the words,
represented as rectangles, on the right part of the graph. The edges are labelled



with the length of the word they lead to. This allows for querying, by kanji, the
words of a given length. The different forms or definitions of a word could be
represented as attributes on the words, or additional nodes connected to their
associated words.

This combinatorial structure is implemented in Neo4j. In Figure 3, in orange
we depict three kanjis for day, one and person. In blue we depict the words
constructed with these kanjis. For instance the top most blue node represents
men day with three different readings depicted in red.

Fig. 3: Screenshot of Neo4j implementation

Overall, in our platform LostMyPieces we have encoded the 101 most frequent
kanjis resulting in a JSON file of size 1 545 KB. With these kanjis we can make
2711 words. The size of the resulting graph is of 10436 nodes and 6563 edges (as
follows l2 : 3618 / l3 : 2064 / l4 : 756 / l5 : 125).



To read a newspaper we should consider 2136 kanjis (that are taught at school
and allow to form 100694 words). We encoded this in Neo4J resulting in a JSON
file of size : 51 813 KB. The resulting graph consists of 319 591 nodes and 295
095 edges, with words made of up to 18 kanjis5. Both graphs are available upon
request.

4 Evaluation and discussion

In this paper we have demonstrated how using a graph based knowledge rep-
resentation solution can be practically used in the context of a serious game
allowing users to learn Japanese. For far our evaluation has been purely func-
tionality oriented. We have held several game sessions with various level users
that have then returned an evaluation sheet deeming themselves satisfied by our
game. Ideally we would like to test our game with two classes of users, having
similar Japanese language skills. they will carry on learning the language over
a period of time and then we could assess the effectiveness of the plateform.
Such effort is, for now, impossible to put in practice. However we are quite op-
timistic with respect to the effectiveness of our game because it allows the user
to understand how the construction of the word takes place (as opposed to just
simply memorising it). We thus hypothesise that such approach will yield better
learning results.

Several future work directions are currently considered. First, several ques-
tions regarding the development of the game could be considered. Can we add
more information on words? How they are linked, do they have similar structure?
Can we use N5 to N1 Japanese levels to categorise our words? Can we create
new imaginary words from this whole database? Instead of using all Japanese
words, could we instead use a list of important words from Japanese learning
methods? Can we use the shop to see what people would usually buy first ?
Can we randomise the shop to alleviate the order bias (buying the first one, or
buying the one with most uses)?

From a representation point of view, the Neo4j database is not local and
having delays on every requests is painful. Can we develop our own local so-
lution for graph database that works inside browser? How suitable is an RDF
representation of the structure and could RDF/S rules bring new information
relevant to the game?

5 Acknowledgements

The authors acknowledge the participants of Imagine Master class at University
of Montpellier for the provided user data. We also thank M. Lafourcade for his
feedback and giving us the opportunity to work together.
5 公共土木施設災害復旧事業費国庫負担法: National Government Defrayment Act for

Reconstruction of Disaster-Stricken Public Facilities



References

1. C. C. Abt. Serious games. University press of America, 1987.
2. M. Chein and M.-L. Mugnier. Graph-based knowledge representation: computa-

tional foundations of conceptual graphs. Springer Science & Business Media, 2008.
3. M. Chein, M.-L. Mugnier, and M. Croitoru. Visual reasoning with graph-based

mechanisms: the good, the better and the best. The knowledge engineering review,
28(3):249–271, 2013.

4. M. Croitoru and E. Compatangelo. A tree decomposition algorithm for conceptual
graph projection. In KR, pages 271–276, 2006.

5. F. Dau. Concept graphs and predicate logic. In International Conference on
Conceptual Structures, pages 72–86. Springer, 2001.

6. P. M. Dung. An argumentation-theoretic foundation for logic programming. The
Journal of logic programming, 22(2):151–177, 1995.

7. W. L. Johnson, H. H. Vilhjálmsson, and S. Marsella. Serious games for language
learning: How much game, how much ai? In AIED, volume 125, pages 306–313,
2005.

8. K. L. Ketner. Pierce’s existential graphs as the basis for an introduction to logic:
Semiosis in the logic classroom. In Semiotics 1980, pages 231–239. Springer, 1982.

9. O. T. Leino. Stone+ life= egg–little alchemy as a limit-idea for thinking about
knowledge and discovery in computer games. In Proceedings of Philosophy of
Computer Games Conference, 2016.

10. G. W. Mineau and B. Moulin. Conceptual Graphs for Knowledge Representation:
First International Conference on Conceptual Structures, ICCS’93, Quebec City,
Canada, August 4-7, 1993. Proceedings, volume 699. Springer Science & Business
Media, 1993.

11. U. Ritterfeld, M. Cody, and P. Vorderer. Serious games: Mechanisms and effects.
Routledge, 2009.

12. F. Serratosa. Fast computation of bipartite graph matching. Pattern Recognition
Letters, 45:244–250, 2014.

13. B. H. Sørensen and B. Meyer. Serious games in language learning and teaching-a
theoretical perspective. In DiGRA Conference, pages 559–566, 2007.

14. J. F. Sowa. Conceptual graphs for a data base interface. IBM Journal of Research
and Development, 20(4):336–357, 1976.

15. T. Susi, M. Johannesson, and P. Backlund. Serious games: An overview. 2007.
16. H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Bipartite graph partitioning and

data clustering. In Proceedings of the tenth international conference on Information
and knowledge management, pages 25–32, 2001.


